- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Oak Ridge National Laboratory, Tennessee.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1964). ORFFE, A Fortran Crystallogrphic Function and Error Program. Oak Ridge National Laboratory, Tennessee. CATANI, A. & ZANAZZI, P. F. (1965). Ric. Sci. 35 (II-A),
- 524.

Table 9. Shortest intermolecular distances

$S(1) \cdots S(1^{iii})$	3∙60 Å
$S(1) \cdots O^{ii}$	3.59
$S(1) \cdots C(2^{ii})$	3.85
$S(1) \cdots C(3^{ii})$	3.86
$S(2) \cdots C(2^{vi})$	3.78
$S(2) \cdots C(3^{vi})$	3.81
0 ····0 ⁱⁱ	3.89
$O \cdots C(2^v)$	3.52
$0 \cdots C(3^{iv})$	3.94
$C(1) \cdots C(3^{iv})$	3.92

- CARRAI, G. & GOTTARDI, G. (1960). Z. Kristallogr. 113, 373.
- CHATT, J., DUNCANSON, L. A. & VENANZI, L. M. (1956a). Nature, Lond. 177, 1042.
- CHATT, J., DUNCANSON, L. A. & VENANZI, L. M. (1956b). Suomen Kem. B29. 75.
- Cox, E, G, & Jeffrey, G, A. (1951). Proc. Roy. Soc. A 207, 110.
- DERENZINI, T. (1938). Mem. Soc. tosc. Sci. nat. 47, 114.
- FRANZINI, M. (1963). Z. Kristallogr. 118, 393.
- GOTTARDI, G. (1961). Z. Kristallogr. 115, 451.
- IKEDA, T. & HAGIHARA, H. (1966). Acta Cryst. 21, 919.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- MERLINO, S. (1968). Acta Cryst. B24, 1441.
- PALM, J. H. (1964). Acta Cryst. 17, 1326.
- PAULING, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
- PEYRONEL, G. & PIGNEDOLI, A. (1967). Acta Cryst. 23, 398.
- SCHOMAKER, V., WASER, J., MARSH, R. E. & BERGMAN, G. (1959). Acta Cryst. 12, 600.

Acta Cryst. (1969). B25, 2276

On the Crystal Structure of Pumpellyite

BY E. GALLI AND A. ALBERTI

Istituto di Mineralogia dell'Università di Modena, Italy

(Received 18 November 1968)

Pumpellyite, Ca₈Al₈(Mg, Fe^{II}, Fe^{III}, Al)₄ [(SiO₄)₄/(Si₂O₇)₄/(OH)₈(H₂O, OH)₄] is a mixed-group silicate, like epidote, which crystallizes in the monoclinic system, space group A2/m, with a=8.83, b=5.90, c=19.17 Å, $\beta = 97^{\circ}7'$ and Z = 1. The structure was refined, with isotropic thermal parameters, by the leastsquares method to an R value of 12.3% for observed reflexions. Pumpellyite is characterized by the presence of two types of symmetrically independent chains of octahedra. The first type, through the point (a/2, c/4), is made up of Al (50%), Mg (35%), Fe (15%), the second of Al only. Both types of chain are united by isolated tetrahedra, SiO₄, and double tetrahedra, Si₂O₇. Finally, in the crystal structure there are two independent calcium atoms in sevenfold coordination. An interesting feature is the distorted coordination of one tetrahedron of the group Si_2O_7 . All other bond distances are within the limits given in the literature.

Introduction

The silicate mineral pumpellyite, like epidote, is characteristic of low grade metamorphic rocks. Pumpellyite probably occurs in nature more frequently than is usually believed; it is easily mistaken for epidote.

This is a report of the refinement of the crystal structure of the mineral. A description of the unrefined structure has been given by Gottardi (1965).

Experimental

The pumpellyite studied was from Hicks Ranch, Sonoma County, California, U.S.A.

The unit-cell data, $a = 8.83 \pm 0.01$, $b = 5.90 \pm 0.01$, c = 19.17 ± 0.02 , $\beta = 97°7' \pm 5'$ were determined, and are similar to those given by Coombs (1953). These data were obtained by a least-squares method starting from the lattice spacings measured on a Guinier-De Wolff powder diagram (Cu radiation) calibrated with 10% silicon powder. The space group was confirmed as A2/m.

The density was measured, on small splinters weighing a few milligrams, with a torsion microbalance; the result was $D_{exp} = 3.18 \pm 0.03$ g.cm⁻³.

A chemical analysis was performed by A. Alietti; the results of this analysis allows the calculation of the following formula, on the basis of 56 oxygen atoms:

 $(Ca_{7\cdot60}Mg_{0\cdot40})_{tot=8\cdot00}(Mg_{1\cdot20}Fe^{II}_{0\cdot77}Fe^{III}_{0\cdot18}Al_{10\cdot00})_{tot=100}$ $_{11.97}[Si_{11.20}Al_{0.80})_{tot=12.00}O_{44}/\{(OH)_{9.29}(H_2O)_{2.71}\}_{tot=12.00}O_{44}/\{(OH)_{9.29}(H_2O)_{2.71}O_{44}/\{(OH)_{9.29}(H_2O)_{2.71}O_{47}/\{(OH)_{9.29}(H_2O)_{2.71}O_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{(OH)_{9.29}(H_2O)_{7}/\{($ 12.00], Z=1.

The above formula and unit-cell constants lead to a calculated density of $D_{\text{calc}} = 3.20$.

The different atoms are grouped following the crystallochemical rules, to reach totals of atomic coefficients near to multiples of 4 (positions with a multiplicity number smaller than 4 are improbable in space group A2/m).

Intensities of 588 reflexions were obtained by visual estimation from Weissenberg photographs of the zero, first, second and third layers, around **b** (Cu $K\alpha$ radiation). The total number of possible reflexions in these layers was 793. Although the exposure time was as high as 120 hours for some films, the high number of non-observed reflexions, 205 or 26%, is a result of the dis-

tortion of single crystals of pumpellyite, resulting in the comet-like appearance of diffraction spots in the Weissenberg photographs (see Coombs, 1953). This particular appearance of the diffraction spots not only prevents the measurement of low intensity diffraction spots, but also lowers the precision of intensity measurements and, hence, of the refinement.

An absorption correction was applied by the Alberti & Gottardi (1966) method, the crystal dimensions be-

Table 1. Observed and calculated structure factors

A minus sign for Fo means 'less than'.

нι	F0 F0	нL	FO FC	нL	FO FC	нц	FO	FC	нt	F0	FC	н	L FO	FC	н	L	FO	FC
-82795 Fux - 0.1068295 Fux - 68263 Fux - 0.10682995 Fux - 0.08269 592 Fux - 0.08295 Fux - 0.1068205 Fux - 0.106820	Fr 0 0 22320 104 55 10 20 10 20 25 25 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20		$ \begin{array}{c} FC & i_{168} G_{10} G_{10}$	L 111111111111111111111111111111111111	$ r = \left(\frac{1}{2} \right) \left(\frac{1}{2$	L	0 011971-0575914200377-0556499130850219293812500755507844072647874120055007811205500781524407 - 5568800-5504781120151481892055491731081110055007811100550078110010000000000	rc 212154495783.99010176084504450438957200164760439932727550398257665227315272074018803150823558289 9458899320737315905073731590509957373290500			$ \begin{array}{c} r_{1} r_{2} r_{3} r_{4} r_{2} r_{5} r_{3} r_{4} r_{2} r_{1} r_{1} r_{1} r_{1} r_{1} r_{1} r_{1} r_{2} r_{1} r_{2} r_{2} r_{2} r_{2} r_{2} r_{2} r_{2} r_{3} r_{4} r_{3} r_{3} r_{4} r_{3} r_{3} r_{4} r_{3} r_{3} r_{4} r_{3} r_{4} r_{3} r_{4} r_{3} r_{4} r_{4$	н ортализортили собетор и собетор и собетор собетор собетор и собетор и собетор собетор собетор собетор собето 		rc 187928324419057712105833804555547835752414507991742824999575 -15-15-58059424190577121058033804555547835752419457828999575 -10-55-10-980577121058033804555547835752419457828999575 -10-55-10-98057721209528419712829595841971289579300788688784197554348888889900200731335617596541975120103117796541975722 -10-51	H 23450789123450789001234507812345078123456780123456780012305070324567801234557801234567801234567801234567801234567801234567801234567801234555780123456780123456780123456780123			14-157149420522241-1141188220507333169903139241414123241166-422642319269237142454-67335054131162-542421491-66553028970044011233911887010541398652205816865018654752058752092875527869300440112339118870105413986522058168650188588980425375865475209287552786930044011233911887010541398652205816865018858898042537586547520928755444489406553028754444894065530288970044011233911887010541398652205816865018858898042537586547520928755444489406553028897004401123391188701054139865220581686520581688889804420123391188701054139865220581688888888888888888888888888888888888
3 -10	825 82	9 1	289 -287 -71 -203	9 -11 10 -11	-// -59 -57 -59	0 4	1868	-2000	8 -14	4 -150	-145	1	7 409	424	3 -	21	200	-337

]	Number of atoms in				2
	unit cell	x/a	y/b	z/c	<i>B</i> (Å ²)
Al, Mg,	Fe 4	0.5000	0.2500	0.2500	0.57 ± 0.14
Ca(1)	4	0.2502 ± 0.0001	0.2000	0.3395 ± 0.0003	0.35 ± 0.12
Ca(2)	4	0.1895 ± 0.0007	0.2000	0.1550 ± 0.0003	0.95 ± 0.13
Si(1)	4	0.0484 ± 0.0009	0.0000	0.0907 ± 0.0004	0.33 ± 0.16
Si(2)	4	0.1674 ± 0.0009	0.0000	0.2482 ± 0.0004	0.38 ± 0.15
Si(3)	4	0.4661 ± 0.0008	0.0000	0.4021 ± 0.0004	0.11 ± 0.14
Al	8	0.2541 ± 0.0005	0.2454 ± 0.0020	0.4964 ± 0.0003	0.08 ± 0.10
O(1)	8	0.1360 ± 0.0013	0.2218 ± 0.0050	0.0685 ± 0.0006	0.56 ± 0.23
O(2)	8	0.2674 ± 0.0014	0.2318 ± 0.0047	0.2444 ± 0.0006	0.86 ± 0.25
O(3)	8	0.3684 ± 0.0013	0.2220 ± 0.0050	0.4209 ± 0.0006	0.58 ± 0.23
O(4)	4	0.1304 ± 0.0023	0.2000	0.4448 ± 0.0010	0.27 ± 0.38
O(5)	4	0.1283 ± 0.0023	0.0000	0.4558 ± 0.0011	0.38 ± 0.41
O(6)	4	0.3695 ± 0.0023	0.2000	0.0445 ± 0.0011	0.37 ± 0.41
O(7)	4	0.3665 ± 0.0022	0.0000	0.0338 ± 0.0010	0.07 ± 0.37
O(8)	4	0.0376 ± 0.0021	0.0000	0.1779 ± 0.0009	0.31 ± 0.36
O(9)	4	0.4746 ± 0.0023	0.2000	0.1764 ± 0.0010	0.40 ± 0.40
O(10)	4	0.0667 ± 0.0021	0.0000	0.3152 ± 0.0010	0.40 ± 0.38
O(11)	4	0.4992 ± 0.0022	0.5000	0.3129 ± 0.0010	0.24 ± 0.38

Fig.1. A plane view, along the b axis of the arrangement of the tetrahedra and octahedra in the structure of pumpellyite. The Ca atoms at y/b=0 are represented by white circles if and by black circles at $y/b=\frac{1}{2}$. Tetrahedra at y/b=0 are marked by light stripes and those at $y/b=\frac{1}{2}$ by heavier stripes.

Table 2. Atomic coordinates with their standard errors

ing $0.09 \times 0.18 \times 0.04$ mm and $\mu = 186.7$ cm⁻¹ for Cu K α radiation.

Refinement

The refinement was carried out by the least-squares program of Busing, Martin & Levy (1962) with the atom form factors for neutral atoms given in *International Tables for X-ray Crystallography* (1962). During refinement the (isotropic) temperature factor of atom Si(3) became negative after each cycle, so it was necessary to fix it at B=0.11 Å², a value obtained by adding the calculated negative value to its positive standard deviation. The lowest residual obtained was as high as 12.3% without non-observed reflexions, and 15.9%

Table 3. Interatomic distances (Å)with their standard errors

The superscripts refer to the symmetry code

-	x	У	Z
'	x	-y	Ζ
"	x	$\frac{1}{2} - y$	$z - \frac{1}{2}$
<i></i>	-x	$\frac{1}{2} - y$	$\frac{1}{2} - z$
iv	1-x	$\frac{1}{2}-y$	$\frac{1}{2} - z$
v	x	1-y	Z
vi	1-x	У	<i>z</i>
vii	1-x	$\frac{1}{2} - y$	1 - z

Interatomic distances and bond angles which are symmetrically dependent are bracketed.

		Distances				
Si(1)-tetra	ahedro	n				
Si(1)–O(1)	Ì	1.60 ± 0.03				
Si(1) - O(1')	ſ	1 64 + 0.02				
Si(1) = O(4) Si(1) = O(8)		1.64 ± 0.02 1.69 ± 0.02				
Average		1.64				
O(1)O(1')		2.62 ± 0.06				
O(1)O(4''')	Ì	2.68 ± 0.02				
O(1') - O(4''')	ł	2 00 2 0 02				
O(1) = O(8) O(1') = O(8)	}	2.70 ± 0.02				
O(4''') - O(8)	J	$2 \cdot 62 \pm 0 \cdot 03$				
Si(2)-tetrahedron						
Si(2)-O(2)	1	1.63 ± 0.02				
Si(2)–O(2')	ſ	1.03 ± 0.02				
Si(2) - O(8)		1.66 ± 0.02				
$S_1(2) = O(10)$		1.65 ± 0.02				
Average $O(2) = O(2')$		1.02 2.73 ± 0.06				
O(2) = O(2)	1	275 10 00				
O(2') - O(8)	}	2.64 ± 0.02				
O(2) - O(10)	1	2.72 + 0.02				
O(2') - O(10)	ĵ	2.73 ± 0.02				
O(8) –O(10)		2.61 ± 0.03				
Si(3)-tetra	ihedro	n				
Si(3) - O(3)	}	1.63 ± 0.02				
SI(3) - O(3') Si(2) - O(61y)	J	1.67 + 0.02				
$S_{1}(3) = O(0^{11})$ $S_{2}(3) = O(0^{11})$		1.67 ± 0.02 1.65 ± 0.02				
Average		1.65				
O(3) - O(3')		2.62 ± 0.06				
$O(3) - O(6^{iv})$)	2.67 + 0.02				
$O(3) = O(6^{17})$	{					
$O(3') = O(9^{1})$	}	2.79 ± 0.02				
$O(6^{iv}) - O(9^{iv})$,	2.58 ± 0.03				

Table 3 (cont.)

1 4010 2	(com.)						
Al, Mg, Fe-octahedron							
Al, Mg, Fe–O(2) Al, Mg, Fe–O(2^{iv})	$\Big\} \qquad 2 \cdot 04 \pm 0 \cdot 01$						
Al, Mg, Fe–O(9) Al Mg, Fe–O(9iv)	2.03 ± 0.01						
Al, Mg, $Fe-O(11)$ Al, Mg, Fe-O(11)	1.90 ± 0.01						
Ai, Mg, Fe-O(114) Average	1.99						
O(2) - O(9) O(2iy) - O(9iy)	$2 \cdot 85 \pm 0.02$						
$O(2) - O(9^{iv})$ (2 ^{iv}) - O(9)	$\begin{cases} 2.92 \pm 0.02 \end{cases}$						
O(2) - O(1) O(2) - O(11) O(2iy) - O(11iy)	2.78 ± 0.02						
$O(2^{(1)}) = O(11^{(1)})$ $O(2) = O(11^{(1)})$ $O(2^{(1)}) = O(11^{(1)})$	$2 \cdot 81 + 0 \cdot 02$						
$O(2^{1}) = O(11)$ O(9) = O(11)	$\begin{cases} 2.60 \pm 0.02 \end{cases}$						
$O(9^{iv}) - O(11^{iv})$ $O(9) - O(11^{iv})$	$\begin{cases} 2.96 \pm 0.01 \\ 2.96 \pm 0.01 \end{cases}$						
O(9 ^{iv})-O(11)	} 2.90±0.01						
Al-octa	thedron						
AI'' = O(1) AI'' = O(3'')	1.84 ± 0.01 1.87 ± 0.01						
Al''-O(4'')	2.04 ± 0.02						
Al''-O(5'')	1.93 ± 0.02						
Al''-O(6)	1.94 ± 0.02						
Al''-O(7)	1.89 ± 0.02						
Average	1.92						
O(1)O(4'')	2.70 ± 0.02						
O(1) - O(5'')	2.71 ± 0.03						
O(1) - O(6)	2.72 ± 0.03						
O(1) - O(7)	2.57 ± 0.02						
$O(3^{\prime\prime}) - O(4^{\prime\prime})$	2.75 ± 0.02						
$O(3^{(1)}) - O(5^{(1)})$	2.65 ± 0.03						
O(3') - O(0)	2.71 ± 0.03 2.72 ± 0.02						
O(3') = O(7)	2.72 ± 0.02 2.06 ± 0.01						
O(4') - O(3')	2.90 ± 0.01 2.53 ± 0.03						
O(4') = O(7)	2.55 ± 0.03						
O(3) = O(0)	2.35 ± 0.03 2.06 ± 0.01						
U(0) = U(7)	2.90 ± 0.01						
Distances							
Ca(1)-O(2)	2.42 + 0.02						
$Ca(1) - O(2^{v})$	} 2.43 ± 0.02						
Ca(1)-O(3) $Ca(1)-O(3^{v})$	2.41 ± 0.02						
Ca(1) - O(4)	2.39 ± 0.02						
Ca(1) - O(8''')	2.52 ± 0.02						
Ca(1) - O(11)	2.32 ± 0.02						
Average	2.42						
Ca(2)-po	lyhedron						
Ca(2) - O(1) $Ca(2) - O(1^{v})$	2.34 ± 0.02						
Ca(2)-O(2) $Ca(2)-O(2^{v})$	$\Big\} \qquad 2 \cdot 37 \pm 0 \cdot 02$						
Ca(2)-O(6)	2.80 ± 0.02						
Ca(2)-O(9)	2.50 ± 0.02						
Ca(2)-O(10''')	2.40 ± 0.02						
Average	2.44						
Ca(1'')-Si(1)	3.10 ± 0.01						
Ca(1) - Si(2)	3.46 ± 0.01						
Ca(1) - Si(3)	3.63 ± 0.01						
Ca(2) - Si(1)	$3.3/\pm0.01$						
$Ca(2) \longrightarrow Si(2)$	$3.4/\pm0.01$						
$Ca(2) = SI(3^{**})$	3.30 ± 0.01						

with non-observed reflexions taking half of the minimum observable value. This lack of precision in the intensity measurements made further refinement pointless. The observed and calculated structure factors are shown in Table 1 and the coordinates of the atoms in Table 2.

Description of the structure

The crystal structure of pumpellyite (see Fig.1) is characterized by the presence of cation-oxygen coordination octahedra which share edges to form chains parallel to **b**. There are two symmetrically independent chains: in the first, the coordinating cations are Al (50%), Mg(35%) and Fe (15%), in the second only Al atoms are present. In the unit cell there are two symmetrically equivalent chains of the first type, and four of the second type. All magnesium and iron ions were set at the centres of the first chains, going through the point (a/2, c/4), because such distributions gave the lowest sum of $|F_o - F_c|^2$. Bond distances in the chains (see Table 3) are quite normal, with an average value of 1.99 Å in the first, and of 1.92 Å in the second. The O-O distances are also normal, with an average of 2.80 Å; smallest O-O distances were measured for the pairs O(5'')-O(6), 2.55; O(7)-O(4''), 2.53; O(11)-O(9), 2.60 Å. In each of these pairs the first oxygen atom is not bound to the silicon atom, and this fact strongly supports the hypothesis that the unbound oxygen atoms are in fact hydroxyl groups (or even water molecules), so that these three distances are shortened as a result of the presence of a hydrogen atom (see Fig.2).

All the other oxygen atoms are also coordinated by silicon atoms, to form both double tetrahedra, Si_2O_7 [with Si(1) and Si(2)], and isolated tetrahedra, SiO_4

Fig. 2. A projection of the structure on the xz plane. Numbers inside the circles give the heights of the atoms in thousandths of the cell edge. The bond lengths are also shown.

[with Si(3)]. Most Si–O bond distances are normal, with an average value of 1.65 Å. Also the O–Si–O bond angles (see Table 4) are quite normal with an average value of 109°4′. The Si(1)–O(8)–Si(2) bond angle is 133°. In the tetrahedron containing Si(1) there is some deviation from the normal value: the Si(1)–O(8) distance is somewhat higher (1.69–0.02 Å) and Si(1)–O(1) lower (1.60 \pm 0.03 Å).

The experimental error alone seems an inadequate explanation for this deviation. To obtain a regular tetrahedron around Si(1) it would be necessary to admit a 2σ error in both Si-O distances, and this is highly improbable. We think that the rather short distance Ca(1''')-Si(1) (3.10 Å), the shortest distance Ca-Si in this structure, could explain the shortening of the Si(1)-O(1) bond. It should be noted also that the distance Al''-O(1) is the shortest of its kind (see Fig. 2). Besides, a lateral shift of Si(1) towards O(8) would be prohibited by two atoms Ca(2) and by Ca(1''').

The coordination of seven oxygen atoms around the calcium atoms is quite simple: Ca(1) is at the centre of a square $[O(2), O(2^v), O(3), O(3^v)]$ parallel to **b**; two other oxygen atoms, O(4) and O(8'''), lie close to the calcium atom at one side, and one oxygen atom, O(11), at the other.

The same situation holds for Ca(2); it is placed in a square $[O(1), O(1^v), O(2), O(2^v)]$ with two oxygen atoms at one side [O(6), O(9)], and one at the other [O(10'')]. The 14 Ca–O distances average 2.43 ± 0.12 Å which is smaller than usual.

It is worth noting that, although the whole refinement was carried out with isotropic temperature factors, some trials with difference syntheses revealed qualitatively strong anisotropic movements of calcium atoms in the direction normal to the coordination square. The low precision of intensity measurement mentioned above discouraged us from attempting any quantitative measurement of this anisotropic temperature factor.

This work was made possible through financial support of Centro Nazionale di Cristallografia del C.N.R., Roma. The authors would like to thank Professor Glauco Gottardi for assistance and for a critical review of the manuscript.

References

- ALBERTI, A. & GOTTARDI, G. (1966). Acta Cryst. 21, 833.
 BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962).
 ORFLS, A Fortran Crystallographic Least-Squares Program. Oak Ridge National Laboratory Report ORNL-TM-305.
- Соомвя, D. S. (1953). Miner. Mag. 30, 113.
- GOTTARDI, G. (1965). Tschermaks Mineralog. Petrog. Mitt. 10, 115.
- International Tables for X-ray Crystallography (1962). Vol. III. Table 3.3.1A. Birmingham: Kynoch Press.

Acta Cryst. (1969). B25, 2281

The Crystal and Molecular Structure of μ-Oxobis[bis(diethyldithiophosphato)oxomolybdenum(V)] 1,2-Dichlorobenzene, Mo₂O₃[S₂P(OC₂H₅)₂]₄.2C₆H₄C1₂

By J.R. KNOX* AND C.K. PROUT

Chemical Crystallography Laboratory, South Parks Road, Oxford, England

(Received 13 January 1969)

 $Mo_2O_3[S_2P(OC_2H_5)_2]_4.2C_6H_4Cl_2$ crystallizes in space group PI with $a=11\cdot36\pm0.01$, $b=13\cdot96\pm0.01$, $c=8\cdot66\pm0.01$ Å, $\alpha=94\cdot9\pm0.2^\circ$, $\beta=103\cdot8\pm0.2^\circ$, $\gamma=81\cdot7\pm0.2^\circ$ and with Z=1. Least-squares refinement with anisotropic temperature factors gave an R index of 0.117 for 3200 non-zero photographic data. The diamagnetic binuclear molecule consists of two distorted octahedra which share a linear bridging oxygen atom situated at an inversion centre. The molybdenum to bridging oxygen atom bond length is 1.863 Å and to the terminal oxygen atom, 1.647. The Mo-S bond *trans* to the terminal oxygen atom is 2.801 Å and the other Mo-S bonds have a mean length of 2.496 Å.

Introduction

Oxidation of square-pyrimidal $MoO(S_2P(OC_2H_5)_2]_2$ (Jowitt & Mitchell, 1966) gives $Mo_2O_3[S_2P(OC_2H_5)_4]_4$, the structure of which we now report.

Experimental

A compound with the formulation $MoO(dtp)_2$, where $dtp = S_2P(OC_2H_5)_2$, diethyldithiophosphate anion was supplied by R.N.Jowitt and P.C.H.Mitchell of Reading University. Recrystallization under nitrogen with 1,2-dichlorobenzene produced ligth-brown transparent crystals. When dried in air they became opaque and

^{*} Present address: Molecular Biophysics Department, Yale University, New Haven, Connecticut, U.S.A.